MATH 2028 - Change of Variables Theorem
GOAL: Derive a general change of variables formula for multiple integrals

Recall : (Method of substitution)
If $g:[a, b] \rightarrow \mathbb{R}$ is C^{\prime} and $f: \mathbb{R} \rightarrow \mathbb{R}$ is cts. then $\quad \int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f \circ g(t) \cdot g^{\prime}(t) d t$
Reason: Let $F(x):=\int_{0}^{x} f(y) d y$. Then $F^{\prime}(x)=f(x)$ by Fund. Thu. of Calculus. On the other hand. Chain Rule \Rightarrow

$$
(F \circ g)^{\prime}(t)=F^{\prime}(g(t)) \cdot g^{\prime}(t)=f \circ g(t) \cdot g^{\prime}(t)
$$

Integrate both sides from a to b and apply Fund. Thu. of Calculus again.

$$
\begin{aligned}
\text { L.H.S. } & =\int_{a}^{b}(F \circ g)^{\prime}(t) d t \\
& =(F \circ g)(b)-(F \circ g)(a) \\
& =\int_{0}^{g(b)} f(y) d y-\int_{0}^{g(a)} f(y) d y=\int_{g(a)}^{g(b)} f(y) d y
\end{aligned}
$$

Suppose that $g:[a . b] \rightarrow \mathbb{R}$ is $1-1$ and $g([a, b])=[c, d]$. Then we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f \circ g(t) \cdot\left|g^{\prime}(t)\right| d t
$$

This is the Change of variables Theorem in 1D.
Q: How to generalize this to higher dimensions?
Recall that a map $g: A \rightarrow B$ is said to be $a\left(C^{\prime}\right)$-diffeomorphism between the open subsets $A, B \subseteq \mathbb{R}^{n}$ if

- g is bijective
- both g and g^{-1} are C^{\prime}

Remark: By Inverse Function Theorem, a C' map $g: A \rightarrow \mathbb{R}^{n}$ is a diffeomorphism onto its image $g(A)=B$ provided that g is $1-1$ and $\operatorname{det}(D g) \neq 0$ everywhere.

Change of Variables Theorem
Let $g: A \rightarrow B$ be a diffeomorphism between two Open subsets $A . B \subseteq \mathbb{R}^{n}$ with measure zero boundary. For any cts $f: B \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
\int_{B} f d V=\int_{A}(f \circ g) \cdot|\operatorname{det}(D g)| d V \tag{*}
\end{equation*}
$$

We will postpone the proof until later.
Let us verify formally how this change of variable formula yields the correct formula for the special coordinates discussed before.

Example 1: (Polar coordinates)

$$
\begin{aligned}
& g=(0, \infty) \times(0,2 \pi) \rightarrow \mathbb{R}^{2},\{(x, 0) \mid x \geqslant 0\} \\
& 2 \pi \\
& g(r, \theta)==(r \cos \theta, r \sin \theta)
\end{aligned}
$$

Note that g is a bijective map from the infinite strip A onto the whole plane minus the nonnegative x-axis B. Moreover.

$$
D g=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and $\operatorname{det}(D g)=r>0$ everywhere in A
Hence, (*) implies the formula

$$
d A=d x d y=r d r d \theta
$$

\qquad
Example 2: (Cylindrical coordinates)

$$
\begin{aligned}
& g=(0, \infty) \times(0,2 \pi) \times \mathbb{R} \rightarrow \mathbb{R}^{3} \backslash\{(x, 0, z) \mid x \geqslant 0\} \\
& g(r, \theta, z):=(r \cos \theta, r \sin \theta, z) \quad \text { bijective! } \\
& D g=\left(\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

\& $\operatorname{det}(D g)=r>0$ Hence. $d V=d x d y d z$ $=r d r d \theta d z$.

Example 3: (Spherical coordinates)

$$
\begin{aligned}
& g=(0 . \infty) \times(0 . \pi) \times(0.2 \pi) \rightarrow\{(x, 0, z) \mid x \geq 0\} \\
& g(\rho . \phi . \theta)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \\
& D g=\left(\begin{array}{ccc}
\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right)
\end{aligned}
$$

$\& \operatorname{det}(D g)=f^{2} \sin \phi>0$
Hence, $d V=d x d y d z=\rho^{2} \sin \phi d \rho d \phi d \theta$.
Sometimes we have to be a bit more careful to apply the change of variable formula.
Example 4 : Evaluate $\int_{0} x^{2} y^{2} d A$ over the open disk Ω of radius 1 in \mathbb{R}^{2} centered at the origin.

Solution: Note that we CANNOT cover the entire Ω with the polar coordinate system from an OPEN SUBSET. To do this properly. we first observe that $f(x, y):=x^{2} y^{2}$ is cts $\&$ bod on Ω. hence f is also integrable on the open set $B:=\Omega,\{(x, y) \mid x \geqslant 0\}$ and

$$
\int_{\Omega} f d A=\int_{B} f d A
$$

since $\{(x, y) \mid x \geqslant 0\}$ has measure zero.
Now. B can be covered by the polar cord $g:(0,1) \times(0,2 \pi) \rightarrow B$. Hence, by $(*)$.

$$
\begin{aligned}
\int_{B} f d A & =\int_{0}^{2 \pi} \int_{0}^{1} r^{4} \sin ^{2} \theta \cos ^{2} \theta \cdot r d r d \theta \\
& =\left(\int_{0}^{1} r^{5} d r\right) \cdot\left(\int_{0}^{2 \pi} \sin ^{2} \theta \cos ^{2} \theta d \theta\right) \\
& =\frac{\pi}{24}
\end{aligned}
$$

Example 5: Evaluate $\int_{B} x d A$ where $B \subseteq \mathbb{R}^{2}$

Solution: It is rather tedious to compute the integral in x, y coordinates. We can perform a linear change of variable first

$$
g:(0,1) \times(0.1) \rightarrow B
$$

$$
g(u, v)==(3 u+v, u+2 v)
$$

Then. $D g=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right) \& \operatorname{det}(D g)=5>0$
Applying (*) gives

$$
\begin{aligned}
\int_{B} x d A & =\int_{0}^{1} \int_{0}^{1}(3 u+v) \cdot 5 d u d v \\
& =5 \int_{0}^{1}\left(\frac{3}{2}+v\right) d v=5 \cdot\left(\frac{3}{2}+\frac{1}{2}\right)=10
\end{aligned}
$$

Example 6: Evaluate $\int_{B} y d A$ where $B \subseteq \mathbb{R}^{2}$ is the open subset

Solution: Define
${ }^{\circ}{ }^{\circ}$

$$
g: A \longrightarrow B
$$

$$
\begin{array}{r}
g(u, v):=\left(\sqrt{\frac{u}{v}}, \sqrt{u v}\right) \\
D g=\left(\begin{array}{cc}
\frac{1}{2 \sqrt{u v}} & -\frac{1}{2} \sqrt{\frac{u}{v^{3}}} \\
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}}
\end{array}\right)
\end{array}
$$

\& $\operatorname{det}(D g)=\frac{1}{2 v}>0$ inside A

Apply (*), we obtain

$$
\begin{aligned}
\int_{B} y d A & =\int_{1}^{4} \int_{1}^{9 / u} \sqrt{u v} \cdot \frac{1}{2 v} d v d u \\
& =\int_{1}^{4} \frac{1}{2} \sqrt{u}\left(\int_{1}^{9 / u} v^{-1 / 2} d v\right) d u \\
& =\int_{1}^{4} \frac{1}{2} \sqrt{u}\left[2 v^{1 / 2}\right]_{1}^{v=9 / 4} d u \\
& =\int_{1}^{4} \sqrt{u}\left(\frac{3}{\sqrt{u}}-1\right) d u \\
& =\int_{1}^{4}(3-\sqrt{u}) d u \\
& =\left[3 u-\frac{2}{3} u^{3 / 2}\right]_{u=1}^{u=4}=\frac{13}{3}
\end{aligned}
$$

